On Free Volume of Polymers Above the Glass Transition

S. M. AHARONI, Chemical Research Laboratories, Allied Chemical Corporation, Morristown, New Jersey 07960

Synopsis

The magnitude of the activation energy for diffusion, E_D , is shown to be inversely dependent on the fractional free volume of the polymer above T_g . From the proportionality of E_D above and below T_g , the magnitude of E_D below T_g is also inversely dependent on the free volume in that temperature range. While this correlation holds very well for our determinations of fractional free volume above T_g , it does not correlate with the Simha-Boyer fractional free volume below T_g , contrary to expectations.

INTRODUCTION

A characteristic temperature of polymer, T_R , was recently described^{1,2} as the temperature at which the number of nonbonded nearest neighbors of each segment is one less than at the glass transition temperature T_g . The T_R is also defined as the temperature at which the extrapolated strength of a polymer reaches zero and becomes independent of the loading rate.³ The value of T_R is determined by the combined effect of two variables: the amount of free volume present in the polymer at T_g and the rate of expansion above T_g . Numerically, T_R is calculated^{2,4} from T_g and $\Delta \alpha$, the difference between the coefficients of expansion above and below T_g . It has recently been shown⁵ that there exists an indirect dependence of T_R on σ , the characteristic ratio which reflects the restrictions on torsional rotation and overall chain flexibility.

From packing density considerations it was demonstrated^{1,2} that $(FFV)_{T_R}$ = 0.113 ± 0.002 above and beyond $(FFV)_{T_R}$ with FFV standing for the fractional free volume at the subscripted temperature. Assuming that a polymer chain is simulable by a string of hard spheres and that it is in a state of equilibrium, T_R is determinable through the equation

$$T_R = T_{\varphi} + T_{\varphi}^{-1/2} (0.113/\Delta \alpha)^{3/2} \tag{1}$$

deriving from the critical exponent equation

$$0.113 = (T_R - T_g) \frac{(\alpha_L - \alpha_G)}{(T_R/T_g - 1)^{1/3}}$$
(2)

where

$$\alpha_L - \alpha_G = \Delta \alpha$$

Taking into consideration the fact that at T_g the polymers are usually not in a state of equilibrium, the fractional free volume at T_R is defined by

$$(FFV)_{T_R} = (\alpha_L - \alpha_G)(T_R - T_g) = \Delta \alpha \,\Delta T \tag{3}$$

It should be noted here that the Simha-Boyer⁶ (SB) equation for fractional free

Journal of Applied Polymer Science, Vol. 23, 223–228 (1979) © 1979 John Wiley & Sons, Inc.

AHARONI

volume at T_g , SB(FFV) $_{T_g}$, is a very special case of eqs. (2) and (3), in which $T_R = 2T_g$ exactly and where $SB(FFV)_{T_g} \simeq 0.113 \simeq (FFV)_{T_R}$.

DISCUSSION

It has been noted by several workers⁷⁻¹³ that for a given amorphous, or for the amorphous part of a semicrystalline polymer, the activation energy for diffusion, E_D , is an increasing function of the penetrant's molecular size but is nearly independent of the structure of the diffusant molecule. This is especially true for inorganic diffusants that have poorer affinity toward the polymer than organic penetrants. It was also found that, especially for inorganic diffusants, the molecular cross section d^2 (d is the molecular diameter) is directly correlated with E_D so that E_D/d^2 is close to constancy for each polymer.¹⁴ The use of this ratio, then, eliminates the effects of the penetrant's molecular size and can be used as a probe to investigate material parameters such as FFV. In the glassy region, below T_g , the activation energy for diffusion is lower, by a more or less constant ratio^{13,14} than in the rubbery region above T_g , for many gaseous diffusants.^{13,15,16} Sufficiently small diffusants, such as H₂ or He, often give the same E_D above and below T_g .

As noted by Meares,¹⁷ " E_D is certainly far larger than would be needed to make a hole of volume just sufficient for the diffusate to jump into," and "it may be concluded that the activation energy is required to open up a passage through which the particle can travel." The work required to open up a passage of a unit length is greater below T_g than above, since the surrounding chains in the glassy state are far less mobile below T_g .¹⁷ The lower E_D below T_g is explained by Meares as resulting from the mean jump length of the diffusant molecules being very much smaller below T_g than above it.¹⁷ E_D is hence dependent on two variables: the volume affected by each jump of the diffusant molecule and the amount of work which is invested in pushing aside the segments in the polymeric matrix. From this, one may hypothesize that when a polymer is very dense with practically no free volume, a very large amount of work, per unit distance, must be invested in order to open a passage for a diffusing molecule, resulting in a very high E_D . On the other extreme, when a polymer has a very high amount of free volume, its chains are easily shoved aside, leading to a low E_D . In other words, E_D for a flexible-chain polymer above T_g is directly proportional to the amount of free volume existing in the system. From the proportionality of E_D above and below T_g , the same argument should hold below T_g . The statement above is in agreement with the fluctuation theory,^{18,19} which states that a lower E_D indicates a smaller excess volume fluctuation.

Now, $(FFV)_{T_R}$ reflects the amount of free volume formed in the polymer in the ΔT temperature interval: the larger $(FFV)_{T_R}$, the larger is the free volume at T_R . When normalized with respect to temperature, under the assumption of uniform expansion in the ΔT interval ($\alpha_L = \text{constant}$), a larger $(FFV)_{T_R}$ reflects a larger free volume at any reduced temperature in the T_R-T_g range. A large $(FFV)_{T_R}$ should hence lead to a small E_D over the whole ΔT interval, and a small $(FFV)_{T_R}$ should lead to a large E_D value. For a given diffusant molecule with a cross-sectional area of d^2 , the ratios of E_D/d^2 should follow the same relationship as above. From the proportionality of E_D above and below T_g , the above $FFV-E_D$ relationship should hold also below T_g but with different numerical values.

The relationship between E_D/d^2 above T_g and $(FFV)_{T_R}$ is shown in Figure 1. It is obvious that E_D/d^2 decreases as $\Delta \alpha \Delta T$ increases, in accord with our expectations. Bearing in mind the difficulties in accurately determining the diffusion and the expansivity parameters, and the fact that they were obtained on different samples in different laboratories, the fit is remarkably good. All but one of the thermal data appear in references 1 and 5. For fluorinated ethylene-propylene (FEP)²⁰ $T_g = 343^{\circ}$ K and $\Delta \alpha = 2.83 \times 10^{-4}$, leading to $T_R = 774^{\circ}$ K and $\Delta \alpha \Delta T = 0.1220$. The diffusion data, mostly from the range of $T_g + 40^{\circ}$ C to $T_g + 100^{\circ}$ C, were obtained from references 9, 10, 13, 14, 15 and 21–37, with the data for PTFE and PC being extrapolated from the glassy to $T_g + 40^{\circ}$ C. Because the E_D/d^2 data per each polymer for several diffusants such as N₂, O₂, CO₂, and H₂O were rather close together, an average value was used in the plot in Figure 1. The line was visually fitted to the data points and is described by

$$(E_D/d^2) \times 10^3 = 3.34 - 20.5(\Delta \alpha \ \Delta T) \tag{4}$$

The equation indicates that, on the average, when a polymer has an $(FFV)_{T_R}$ of about 0.16, the transport of gas molecules through it becomes practically effortless. Since FFV's reflect significantly larger total free volumes at $T > T_g^2$

Fig. 1. Plot of E_D/d^2 vs. $(FFV)_{T_R}$. Abbreviations: poly(vinyl acetate) (PVAC), poly(vinyl chloride) (PVC), poly(vinylbutyral) (PVBU), polystyrene (PS), poly(vinylidene chloride) (PVDC), poly(methyl acrylate) (PMA), poly(chlorotrifluoroethylene) (PCTFE), polycarbonate of bisphenol A (PC), poly(methyl methacrylate) (PMMA), poly(ethylene terephthalate) (PET), poly(vinyl alcohol) (PVOH), polypropylene (PP), poly(tetrafluoroethylene) (PTFE), poly(ethyl methacrylate) (PEMA), polychloroprene (PCIP), poly(oxymethylene) (POM), poly(*n*-butyl methacrylate) (PnBMA), polyethylene (PE), poly(vinyl fluoride) (PVF), fluorinated ethylene propylene (FEP), poly-transisoprene (PtIP), natural rubber (NR), poly-cis-isoprene (PcIP), polyisobutylene (PiBUT), poly-(dimethylsiloxane) (PDMS), polybutadiene (PBD).

Fig. 2. Plot of E_D/d^2 vs. $SB(FFV)_{T_p}$. Same abbreviations as in Fig. 1.

one deals here with volume increases of the order of 0.25 above the total free volume at T_g . On the other hand, when $(FFV)_{T_R} = 0$, the value of E_D/d^2 is enormous, indicating that molecular rupture and material destruction will occur before transport will take place.

When experiments were performed over a wide temperature interval above T_g , it became obvious that a gradual decrease in E_D takes place with the increase in temperature. This was observed for such diverse systems as natural rubber,^{8,38} poly(vinyl acetate),³⁹ poly-*cis*-isoprene,^{40,41} polyethylene,⁴² poly(methyl acrylate),⁴³ chloroprene,⁴¹ possibly polystyrene,⁴⁴ and a host of other rubbery substances.^{7,8,40,42} These relationships are all in agreement with our conclusion that an increase in *FFV* above T_g is associated with a corresponding decrease in $E_D d^2$. From the proportionality of E_D above and below T_g , this conclusion carries over to temperatures below T_g , too. From his experimental data, van Amerongen concluded⁸ that it appears that the experimental points for a given gas fall along curves of the shape

$$E_D = a - b(T + T_g) \tag{5}$$

This equation bears a remarkable similarity in form and content to our eq. (4). Due to the scarcity of data, it is impossible yet to determine whether these two equations are in essence one and the same. Nevertheless, the expectations from our model are in perfect agreement with van Amerongen's conclusion.

To be physically meaningful, the Simha-Boyer fractional free volume at T_g should show an inverse dependence on the magnitude of E_D/d^2 both above and below T_g . That is, the larger $SB(FFV)_{T_g}$, the smaller is E_D/d^2 . The similarity in the dependence of $SB(FFV)_{T_g}$ above and below T_g should arise from the constant proportionality between E_D/d^2 above and below T_g . The experimental

observations, however, contrast the expected $SB(FFV)_{T_g}-E_D/d^2$ relationship. This relationship is plotted in Figure 2. Here, E_D/d^2 increases with the increase in $SB(FFV)_{T_g}$, and the visually fitted line is described by the equation

$$(E_D/d^2) \times 10^3 = -0.35 + 12.3(\Delta \alpha T_g) \tag{6}$$

According to this equation, the larger the free volume, the higher is the activation energy for diffusion through the polymer. Since this contradicts experimental results, cohesive energy considerations, and diffusion theory, the physical meaning of $SB(FFV)_{T_g}$ should be reexamined.

Finally, the correlation between E_D/d^2 and $(FFV)_{T_R}$ is useful in estimating unknown parameters such as $\Delta \alpha$ or E_D above T_g . This is demonstrated in this work by the case of poly(vinyl fluoride) (PVF) for which E_D but not $\Delta \alpha$ was known. By placing the PVF point on the line in Figure 1 at a point corresponding to E_D/d^2 , and from the knowledge of T_g and T_R , $\Delta \alpha$ was calculated. E_D can be estimated in a similar fashion.

References

1. S. M. Aharoni, J. Macromol. Sci.-Phys., B9, 699 (1974).

2. S. M. Aharoni, J. Macromol. Sci.-Phys., B10, 663 (1974).

3. S. M. Aharoni, J. Polym. Sci., Symp. No. 42, 795 (1973).

4. S. M. Aharoni, Paper #1, 101st Meeting of the American Chemical Society, Rubber Division, Boston, April 1972.

5. S. M. Aharoni, J. Appl. Polym. Sci., 20, 2863 (1976).

6. R. Simha and R. F. Boyer, J. Chem. Phys., 37, 1003 (1962).

7. G. J. Van Amerongen, J. Polym. Sci., 5, 307 (1949).

8. G. J. Van Amerongen, Rubber Chem. Technol., 37, 1065 (1964).

9. S. N. Zhurkov and G. Ya. Ryskin, Zh. Tech. Fiz. USSR, 24, 797 (1954).

10. G. Ya. Ryskin, Zh. Tech. Fiz. USSR, 25, 458 (1955).

11. P. Meares, Trans. Faraday Soc., 53, 101 (1957).

12. R. M. Barrer, J. Phys. Chem., 61, 178 (1957).

13. W. W. Brandt, J. Phys. Chem., 63, 1080 (1959).

14. D. W. Van Krevelen, Properties of Polymers, Elsevier, Amsterdam, 1972, pp. 85ff., 109ff., 281ff.

15. K. D. Ziegel and F. R. Eirich, J. Polym. Sci., Polym. Phys. Ed., 12, 1127 (1974).

16. H. B. Hopfenberg and V. Stannett, in *The Physics of Glassy Polymers*, R. N. Haward, Ed., Wiley-Halsted Press, New York, 1973, pp. 504-547.

17. P. Meares, *Polymers Structure and Bulk Properties*, Van Nostrand, London, 1965, pp. 336–338.

18. A. T. DiBenedetto, J. Polym. Sci. A, 1, 3459 (1963).

19. A. T. DiBenedetto, J. Polym. Sci. A, 1, 3477 (1963).

20. E. E. Hopkins, E. I. du Pont Company, personal communication, October 4, 1974.

21. R. P. Kambour and F. L. Pilar, Polym. Prepr., 2(2), 175 (1961).

22. V. Stannett, in *Diffusion in Polymers*, J. Crank and G. S. Park, Eds., Academic Press, London, 1968, pp. 41ff.

23. G. J. Van Amerongen, J. Appl. Phys., 17, 972 (1946).

24. J. A. Barrie and D. Machin, J. Macromol. Sci.-Phys., B3, 645 (1969).

25. K. D. Ziegel, H. K. Fernsdorff, and D. E. Blair, J. Polym. Sci. A-2, 7, 809 (1969).

26. A. S. Michaels and H. J. Bixler, J. Polym. Sci., 50, 413 (1961).

27. R. A. Pasternak, G. L. Burns, and J. Heller, Macromolecules, 4, 470 (1971).

28. V. Stannett and J. L. Williams, J. Polym. Sci. C, 10, 45 (1966).

29. J. A. Barrie, in *Diffusion in Polymers*, J. Crank and G. S. Park, Eds., Academic Press, London, 1968, pp. 259ff.

30. S. P. Chen, Polym. Prepr., 15(1), 77 (1974).

31. W. H. Burgess, H. B. Hopfenberg, and V. T. Stannett, J. Macromol. Sci.-Phys., B5, 23 (1971).

32. A. Peterlin, J. Macromol. Sci.-Phys., B11, 57 (1975).

AHARONI

33. A. W. Myers, C. E. Robers, V. Stannett, and M. Szwarc, Tappi Monographs, 23, 62 (1962).

34. A. S. Michaels, W. R. Vieth, and J. A. Barrie, J. Appl. Phys., 34, 13 (1963).

35. B. P. Tikhomirov, H. B. Hopfenberg, V. T. Stannett, and J. L. Williams, *Makromol. Chem.*, 118, 177 (1968).

- 36. P. Meares, J. Am. Chem. Soc., 76, 3415 (1954).
- 37. J. A. Manson and E. H. Chiu, J. Polym. Sci. Symp., 41, 95 (1973).
- 38. M. H. Hayes and G. S. Park, Trans. Faraday Soc., 51, 1134 (1955).
- 39. A. Kishimoto, J. Polym. Sci. A, 2, 1421 (1964).
- 40. J. R. Semancik and C. E. Rogers, Polym. Prepr., 10(1), 398 (1969).
- 41. M. Mozisek, Polym. Eng. Sci., 10, 383 (1970).
- 42. J. E. Lundstrom and R. J. Bearman, J. Polym. Sci., Polym. Phys. Ed., 12, 97 (1974).
- 43. H. Fujita, A. Kishimoto, and K. Matsumoto, Trans. Faraday Soc., 56, 424 (1960).
- 44. J. L. Lundberg, M. B. Wilk, and M. J. Huyett, Ind. Eng. Chem., Fundam., 2, 37 (1963).

Received August 25, 1977 Revised October 30, 1977